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ON TWO CLASSES OF SIMULTANEOUS PELL EQUATIONS 
WITH NO SOLUTIONS 

P. G. WALSH 

ABSTRACT. In this paper we describe two classes of simultaneous Pell equa- 
tions of the form x2 dy2 = Z2 _ ey2 =1 with no solutions in positive integers 
x, y, z. The proof is elementary and covers the case (d, e) = (8, 5), which was 
solved by E. Brown using very deep methods. 

1. INTRODUCTION 

There have been several papers written that deal with the simultaneous solution 
to two Pell equations. The general form of this system of equations is 

ax - by2 = c, 

dz2 _-ey2 = f, 

where a, b, c, d, e, f are nonzero integers such that the two equations are not multi- 
ples of one another. It follows from the work of Thue [12] and Siegel [10] that these 
systems have only a finite number of solutions in integers x, y, z. Furthermore, 
Baker's theorem on linear forms in logarithms of algebraic numbers [1] provides 
a method to compute an upper bound for the size of the solutions. In [2], Baker 
and Davenport used such an upper bound along with techniques from diophantine 
approximation and lengthy multiprecise computations to prove that the system 

-2 - 3y2 = -2, z2 _ 8y2 = - 7 has only the solutions (x, y, z) = (1, 1, 1), (19, 11, 31). 
Grinstead [7] used Baker's theorem but refined the technique of Baker and Daven- 
porte ([2]) to show that the system x2 _ 8y2 = 1, 3z2 - 2y2 = 1 has no solutions. 
Brown [4] used Grinstead's method, together with Baker's theorem to show that 
the only solution to the system x2 _ 8y2 = 1, z2 - 5y2 = 1 iS (X, y, Z) = (1, 0, 1). 

The purpose of this paper is to use elementary methods to describe two classes of 
simultaneous Pell equations which have no nontrivial solutions. In particular, one 
of the two classes contains the system considered by Brown in [4]. Thus, Theorem 1 
generalizes the result in [4], and moreover, the proof relies only on basic properties 
of solutions to Pell's equation and the nonexistence of squares in a certain second 
order linear recurrence. 

Theorem 1. Let a > 1 be an integer. Let q be a prime such that 92- 2qy2 =-1 

is solvable, and such that 122a+1 -ql = pb for some prime p and b > 0. Then the 
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system of simutltaneouts Pell equations 

(1) x2 22a+1y2 1 

(2) z2 _ qy2 = 

has only the trivial solution (x, y, z) = (1, 0, 1). 

If a = 1 and q = 5, then the hypotheses of Theroem 1 are satisfied, and this 
is the system considered by Brown in [4]. We remark that by the main result of 
Trotter in [11], x2 -2qy2 = -1 is solvable for q _ 5 (mod 8), and so this hypothesis 
can be removed from Theorem 1 for these primes. 

Theorem 2. Let d = 22ac and e be integers, with c > 1 odd, a > 1, and e odd, 
such that de = 22ak4D for positive integers k, D with the property that the Pell 
equation x2 - Dy2 = -4 has soluttions in odd integers x, y. If Id - eI = pb for some 
prime p and b > 0, then the system of simultaneous Pell equations 

(3) x2-dy2 1, 

(4) z2 _ ey 

has only the trivial soluttion (x, y, z) = (1, 0, 1). 

This result shows for example that no nontrivial solutions exist to (3) and (4) 
when d = 20 and e = 17. Using the results of Cohn ([6]), one may extend this result 
to those D for which x - Dy2 =-4 has no odd solutions x and y, but for which 
x2 - Dy2 = 4 has odd solutions. We forgo this analysis. The main ingredient in the 
proof of this result is the absence of squares in the set of values of y of solutions to 
x2 - Dy2 = 1, proved by Cohn in [5] and [6]. An interesting open problem, which 
would have application to extending Theorem 2, is to prove an analogous result 
of Cohn's for those values of D for which x2 - Dy2 = 4 has no solutions in odd 
integers x and y. Bennett [3] has recently proved that the system (3) and (4) has 
at most 3 solutions for arbitrary but distinct positive integers d and e. His method 
uses the theory of linear forms in the logarithms of algebraic numbers. 

2. PROOFS 

The proofs of Theorems 1 and 2 rely on properties of solutions to Pell equations. 
The reader is referred to [8] for a description of these properties. 

Proof of Theorem 1. We will assume that 22a+1 > q, as the other case is proved in 
the same manner. Put t = pb, then subtracting (2) from (1) yields x2 _ z2 = ty2. 

From the hypotheses it follows that q _ 1 (mod 4), and hence from (1) and (2) we 
see that both x and z are odd, and that gcd(x - z, x + z) = 2. Since t is a power of 
an odd prime, it follows that there are positive integers A, B, with y = 2AB, such 
that either x - z 2tA2, x + z = 2B2 or x - z = 2B2, x + z = 2tA2. In either case 
we deduce that x B2 + tA2. Substituting this into (1) yields 

B4 + (2t -4. 22a+l)B2A2 + t2A4 - 1 = O, 

which is the same as 

(5) (B2 - (22a+1 + q)A2)2 - 22a-lq(2A)4 = 1. 

Let T + U 2q denote the fundamental solution to the Pell equation x2 -2qy2 =-1, 
and for i > 1 let Ti + Ui/4 = (T + U2-q) . From the divisibility properties of 



ON TWO CLASSES OF SIMULTANEOUS PELL EQUATIONS WITH NO SOLUTIONS 387 

solutions to x2 - 2qy2 = h1 (see [8]), 4 divides U, if and only if 4 divides i. From 
(5) we find that there must be an integer i such that 

IB2 - (22a?1 + q)A2l + (2a?lA2) = T42 + U4, 2q. 
Again from the properties of solutions to Pell equations we have that U4j = 2T2iU22, 
gcd(T2i, U22) = 1, T2j is odd, and U2, is even. It follows that there are positive 
integers C and E such that T2, = 02 and U2, = 2aE2. Thus there is a positive 
integer F such that either 

(6) C4-1 2qF4 

or 

(7) C4 1 8qF4, 

depending on whether a is even or odd. Since C is odd, gcd(C2 + 1,02 - 1) = 2, 
and 2 properly divides 02 + 1. It follows from either of (6) and (7) that there is a 
positive integer G such that either C2 + 1 = 2G4 or C2 + 1 = 2qG4. 

By the result of [9], the first of these two possibilities implies that either G = 1 
or G C 13. If G = 13, then C = 239, and it is easily checked that C4 - 1 is not of 
the form 8qF4 or 2qF4. Therefore this case does not lead to a solution of (1) and 
(2). The case G = 1 results in the trivial solution (x, y, z) = (1, O, 1). 

The second possibility implies that there is an odd index I such that 

C+G2 2q = Ti + Ul /9q 

We show that this cannot occur. Let P denote a prime dividing 02 = T2,. Then 
since gcd(T2,, U22) = 1, P divides U42 = 2T2,U22, but P does not divide U2,. By the 
divisibility properties of solutions to Pell's equation, it follows that 4 divides any 
index j for which P divides U3. But P divides Tl, and hence P divides U21 2T1 Ul, 
which is not possible from the fact that I is odd. 

Proof of Theorem 2. We will assume that d > e, as the other case is proved in the 
same manner. Let t = d - e, then subtracting (4) from (3) yields x2 _ Z2 ty2. It 
is evident that gcd(x - z, x + z) 1 or 2. Thus, either x ? z - tA2, x T z = B2 
with y =AB, or x z =2tA2, x T z 2B2 with y = 2AB. We deduce that either 
2x = tA2 + B2 in the first case, or x tA2 + B2 in the second case. Substituting 
these into (3), simplifying, and using the quadratic formula, we find that 

(8) B2 = (d + e) ? 2 deA4 + 

in the first case, and 

(9) B2 = (d + e) ? V4deA4 + 1 

in the second case. From (8) there is an integer X such that 

(10) X2 - deA4 1, 

and from (9) there is an integer X such that 

(11) X2 - 4deA4 1. 

From (10) we have that X2 - 22a(kA)4D = 1. If a is odd we appeal to [5, p. 163, 
Equation 3] to find that D = 5, 2(a-l)/2kA = 6, and X = 161. For all possible 
choices of d and e satisfying the hypotheses of the theorem we find that the right 
hand side of (8) is not a square. If a is even we appeal to [5, p. 163, Equation 
1] to find that D = 5 and 2a/2kA = 2. In this case there are no possible values 
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of d and e satisfying the hypotheses of the Theorem 2. From (11) we have that 
X2- 22a+2(kA)4D = 1. In the same manner as above we deduce from [5] that 
there are no possible values of d and e which yield nontrivial solutions to (3) and 
(4). 
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